

PRODUCT SPECIFICATION

128*64 DOTS LCD MODULE MODEL: G1206ZDTRNFG-B2 Ver:1.2

< <>> Preliminary Specification

< <> Finally Specification

	CUSTOMER'S APPROVAL				
CUSTOMER :					
SIG	NATURE:	DATE:			

APPROVED	PM	PD	PREPARED
BY	REVIEWED	REVIEWED	BY

Issued Date:2018-03-19 **Doc. No.:**QP-001-027/B0

Revision Status

		Page	Content	Modified By
Ver 1.0	2016-02-01		First Issued	
Ver 1.1	2018-02-11		Modify Sample NO.,Polarizer mode & IDD	
Ver 1.2	2018-03-19		Add Initialization Program	

Table of Contents

Nc).	Contents Pag	e
1	T E	CHNOLOGY DESCRIPTION	4
2.	TY	PICAL APPLICATIONS	4
3.	GE	NERAL DESCRIPTION	4
4.	MI	CHANICAL SPECIFICATIONS	4
5.	IN	FERFACE SIGNALS	8
6.	AB	SOLUTE MAXIMUM RATINGS	9
7.	EL	ECTRICAL SPECIFICATIONS1	0
8.	EX	AMPLE INITIALIZATION PROGRAM10	2
9.	OP	ГІСАL CHARACTERISTICS AT 25°С12	5
10.	QU	ALITY SPECIFICATIONS1	7
11.	HA	NDLING PRECAUTION	2

1. Technology Description

BCD (Bi-stable Cholesteric Display) is a sunlight readable reflective LCD with extremely low power consumption characteristics. Due to the non-volatile memory feature of the technology, zero power is required to retain the image of the display. Energy is only required to change the displayed image. No backlighting is required, only ambient lighting from the surrounding is required. Readability when under direct sunlight is excellent and good contrast from viewing at very wide angles are possible.

2. Typical Applications

This module is intended for general purpose graphic and character display applications. Suggested uses include instrumentation, remote control, electronic product or price label, point of sale display, general purpose indoor or outdoor signage and information display.

3. General Description

The features of LCD are as follows

- * Passive matrix bistable cholesteric LCD graphic module
- * Color : Black & Yellow
- * Display mode :VA
- * Driver/Controller IC :SSD1603
- * Interface Input Data : 4-wires Serial Interface
- * Driving scheme : Special BCD driving scheme
- * Driving Method : 1/64 Duty,static
- * Viewing Direction : Full Viewing
- * Backlight : Without
- * Polarizer mode : Without polarizer

: -

Yellow character with Black background

*Sample NO.

4. Mechanical Specifications

The mechanical detail is shown in Fig. 1 and summarized in Table 1 below.

Item	Specification	Unit
Module Size	65(W) x 43.4(H) x 1.4(D)	mm
Viewing Area	61 MIN(W) x31.4 MIN(H)	mm
Active Area	55.025(W) x 27.505(H)	mm
Number of Dots	128 X64 Dots	-
Dot Size	0.415(W) x 0.415(H)	mm
Dot pitch	0.43(W) x 0.43(H)	mm

Table 1

Figure 2: Block Diagram

Figure 3: Circuit Diagram

Issued Date:2018-03-19 **Doc. No.:**QP-001-027/B0

5. Interface Signals

		Table 2
PIN NO.	SYMBOL	FUNCIONS
1	V0	It is the high voltage power input pin and panel driving voltage. It should be connected to VCP1.
2	V4	Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to $1/N * V0$, where N is equal to the Bias ratio Setting.
3	V3	Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to $2/N * V0$, where N is equal to the Bias ratio Setting.
4	V2	Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to $(N-2)/N * V0$, where N is equal to the Bias ratio Setting.
5	V1	Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to $(N-1)/N * V0$, where N is equal to the Bias ratio Setting.
6	VDD	This pin is the system power supply pin of the logic block.
7	VDDIO	Power supply for interface logic level. It should be match with the MCU interface voltage level. It must always be equal or lower than VDD.
8	D/C	This pin is Data/Command control pin. A high at D/C indicates data input while a low at D/C indicates command input.
9	CS1	These pins are the chip select inputs for communication between MCU. To select the chip CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high.
10	RESET	This pin is the reset signal input. Initialization of the chip is started once this pin is pulled low. Minimum pulse width for reset sequence is 20us.
11	SCLK	In serial interface mode, D1 is the serial data input (SDIN), D0 is the serial
12	SD	clock input, (SCLK).
13	BUSY	A high level indicates busy status (output driving waveform) of the driver.
14	VSS	Ground.
15	VCP1	DC/DC output voltage. Connect with a capacitor to VSSC. It should be connected to V0.
16	C1P	DC/DC flying capacitor terminal.
17	C1N	Connect a capacitor between C1N and C1P.
18	VCP2	DC/DC intermediate output voltage. Connect with a capacitor to VSSC. If using external mode with HV buffer enabled, it should be connected to V0.
19	C2P	DC/DC flying capacitor terminal.
20	C2N	Connect a capacitor between C2N and C2P.
21	VCP3	DC/DC intermediate output voltage. Connect with a capacitor to VSSC.
22	C3P	DC/DC flying capacitor terminal.
23	C3N	Connect a capacitor between C3N and C3P.
24	VCP4	DC/DC intermediate output voltage. Connect with a capacitor to VSSC.
25	C4P	DC/DC flying capacitor terminal.
26	C4N	Connect a capacitor between C4N and C4P.
27	VCI	Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.
28	VSS	Ground.

6. Absolute Maximum Ratings

6.1 Electrical Maximum Ratings-For IC Only

Table3

Parameter	Symbol	Conditions	Min.	Max.	Unit
	V _{DD}		-0.3	+3.6	V
Current () (alterna	V _{DDIO}	TA=+25°C, Referenced to $V_{SS} = 0V$	-0.3	Min(VDD+0.5,+3.6)	V
Supply Voltage	Vo		-0.3	+38	V
	V _{CI}		-0.3	+3.6	V
Input Voltage	V _{in}		V _{ss} - 0.3	V _{DDIO} + 0.3	V

Note1: $TA = +25 \degree C$.

Note2: The maximum applicable voltage on any pin with respect to VSS (0V).

Note3: The modules may be destroyed if they are used beyond the absolute maximum ratings.

6.2 Environmental Condition

Table4

Item	Operating temperature (Topr)		Storage temperature (Tstg)		Remark	
	Min.	Max.	Min.	Max.		
Ambient temperature	-20°C	+70°C	-30°C	+80°C	Dry	
Humidity	90% max. RH for Ta \leq 40°C < 50% RH for 40°C < Ta \leq Maximum operating temperature				No condensation	
Packing vibration(GB/T5170.14-2009)	Frequency range:10Hz~50Hz Acceleration of gravity:5G X,Y,Z 30 min for each direction.				3 directions	

Note : Product cannot sustain at extreme storage conditions for long time.

7. Electrical Specifications

7.1 Typical Electrical Characteristics

At Ta = 25 °C, VDD = $+3.0V\pm 5\%$, VSS=0V.

Table5

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Current unality and	VDD-VSS		2.7	3.0	3.5	V
Supply voltage (System)	VCI-VSS		VDD	-	3.5	V
(System)	VLCD		-	26	-	V
Input signal voltage low	V _{IL}		0	-	0.2V _{DDIO}	V
Input signal voltage high	V _{IH}		0.8V _{DDIO}	-	V _{DDIO}	V
Cupply current	IDD	VDD=3.0V	-	0.5	-	mA
Supply current	ICI	VCI=3.0V	-	0.9	2.0	mA

* Internally Generated

7.2 TIMING Specifications

At Ta = +25 °C, VDD = VCI = VDDIO = +3.0V \pm 5%

Table 6

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	60	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	20	-	-	ns
t _{DSW}	Write Data Setup Time	30	-	-	ns
t _{DHW}	Write Data Hold Time	30	-	-	ns
T _{CLKL}	Clock Low Time	30	-	-	ns
T _{CLKH}	Clock High Time	30	-	-	ns
t _{css}	Chip Select Setup Time (for D7 input)	30	-	-	ns
t _{CSH}	Chip Select Hold Time (for D0 input)	30	-	-	ns
t _R	Rise Time	-	-	10	ns
t _F	Fall Time	-	-	10	ns

Figure 4:Timing characteristic of 4-wires Serial Interface

7.3 Temperature Compensation

Table 7: TC Table

	View Area	View Area Idle	Active Area	Active Area	Drive
Temperature, T(℃)	Clear Duration	Duration	Clear Duration	Idle Duration	Duration
	(ms)	(ms)	(ms)	(ms)	(ms)
50≪T<70	6	12	100	12	6
10≪T<50	18	12	100	12	18
0≪T<10	35	12	150	12	35
-5≪T<0	50	12	200	12	50
-10≪T<-5	80	12	250	12	80
-15≪T<-10	150	12	350	12	150
-20≪T<-15	350	12	700	12	350

Notes: For details, please reference to BCD application notes.

8.Example Initialization Program

```
void com_out(unsigned char ComDat)
{
             unsigned char mask;
             LCD_CS1=0;
                                 //CS1=LOW:chip select
             LCD_DC =0;
                                 //D/C=LOW :COMMAND CONTROL INPUT
       for(mask=0x80;mask!=0;mask>>=1)
             {
                          if(ComDat&mask)
                          {
                                LCD_SDA=1; //DATA INPUT
                          }
                          else
                          {
                                LCD_SDA=0; //DATA INPUT
                          LCD_SCL=0; //CLOCK INPUT
                          _nop_();
                          _nop_();
                          LCD_SCL=1; //CLOCK INPUT
                          _nop_();
                          _nop_();
             LCD_CS1=1; //CS1=HIGH:chip not select
void data_out(unsigned char ComDat)
{
             unsigned char mask;
             LCD\_CS1=0; \ //CS1=LOW: chip \ select
                          //D/C=LOW :DATA CONTROL INPUT
             LCD_DC = 1;
       for(mask=0x80;mask!=0;mask>>=1)
             {
                          if(ComDat&mask)
                          {
                                LCD_SDA=1; //DATA INPUT
                          }
                          else
                          {
                                LCD_SDA=0; //DATA INPUT
                          LCD_SCL=0; //CLOCK INPUT
                          _nop_();
                          _nop_();
                          LCD_SCL=1; //CLOCK INPUT
                          _nop_();
                          _nop_();
             LCD_CS1=1; //CS1=HIGH:chip not select
}
void reset(void)
     ł
      LCD_RES=0;
             Delay_ms(100);
      LCD_RES=1;
             Delay_ms (100);
void Repeat_set (unsigned char repeat_times1, unsigned char repeat_times2, unsigned char repeat_times3)
{
  com_out (0x93);
                         //VA clear repeat times
  com_out (repeat_times1);
  com_out (0x94);
                         //VA idle repeat times
  com_out (repeat_times1);
  com_out (0x95);
                         //AA clear repeat times
  com_out (repeat_times2);
  com_out (0x96);
                         //AA idle repeat times
  com_out (repeat_times2);
  com_out (0x97);
                         //Driving repeat times
  com_out (repeat_times3);
}
```

Issued Date:2018-03-19 **Doc. No.:**QP-001-027/B0

void init_lcd()

com_out(0xA9); //Analog control auto ON/OFF com_out(0x00); //OFF com_out(0xA3); //SET analog control com_out(0x1A); // *Enable band gap + other analog control com_out(0xF6); // *Enable Oscillator com_out(0x40); //set display start line // set bias resistor ladder com_out(0xe9); com_out(0x84); // Enable bias ladder com_out(0x2f); //set power control register com_out(0x80); // Set thecontrol scheme com_out(0x00); // com_out(0x0a); // Set VA clear hold time com out(0x0A); // Set VA idle hold time // Set AA clear hold time com_out(0x15); com_out(0x0C); // Set AA idle hold time com_out(0x0F); // Set driving using time // Set clear voltage com_out(0x50); com_out(0x48); // Set drive voltage com_out(0xa8); // Set Multiplex Ratio com_out(0x40); // Set duty = 1/64 com_out(0xa2); //set LCD bias com_out(0x02); // Set bias = 1/9 //set normal /reverse display:x0=0 normal com_out(0xa6); com_out(0x32); //set driving scheme com_out(0x20); // Set scheme A com_out(0xa0); //set segment remap com_out(0xc8); //set com output scan direction com_out(0x00); //set higher column address com_out(0x10); //set lower column address Repeat_set (0,0,0); com_out(0x31); //driving update } void Write_BMP(unsigned char arr[]) { unsigned char *spr,page,col; spr = arr; for(page=0;page<8;page++) { com_out(0xb0+page); //set page address com_out(0x10); //set higher column address com_out(0x00); //set lower column address for(col=0;col<128;col++){ data_out(*spr++); } data_out(0x00); data_out(0x00); data_out(0x00); data_out(0x00); com_out(0x32); com_out(0x20); Repeat_set (1,0,0); com_out(0x31); Delay_US(100); Repeat_set (0,1, 0); com_out(0x31); Delay_US(100); com_out(0x32); com_out(0x20); Repeat_set (0,0, 1); com_out(0x31); }

void main(void) { reset(); while(1)

init_Icd(); Write_BMP(demo);

}

char code demo $[]={$ 0XDF,0X0F,0X0F,0X0F,0XFF,0XFF,0XFF,0XDF,0XCF,0XEF,0X0F,0X0F,0X1F,0XFF,0X7F,0X7F, 0XFF,0XFF,0XDF,0XCF,0XEF,0XEF,0X0F,0X1F,0XFF,0XFF,0X7F,0X1F,0X0F,0X0F,0XFF,0XFF, 0XFF.0XF7.0XE6.0XEE.0XEE.0XE0.0XF1.0XFF.0XFF.0XF0.0XE0.0XEF.0XF5.0XF3.0XE1.0XED. 0XFF,0XFF,0XE7,0XE3,0XE9,0XEC,0XEE,0XEF,0XFF,0XF9,0XF8,0XFA,0XE0,0XE0,0XFB,0XFF, 0XFF,0X8F,0X07,0X77,0X77,0X67,0XEF,0XFF,0XFF,0X0F,0X0F,0XBF,0XFF,0X7F,0X3F,0XBF, 0XFF,0XFF,0XFF,0XEF,0XEF,0X07,0X07,0XFF,0XFF,0XFF,0X07,0X07,0XB7,0XB7,0X37,0X77, 0XFF,0XFB,0XF3,0XF7,0XF7,0XF0,0XF8,0XFF,0XFF,0XF8,0XF0,0XF7,0XFF,0XF8,0XF0,0XF7, 0XFF,0XFF,0XFF,0XFF,0XFF,0XF0,0XF0,0XFF,0XFF,0XFF,0XFB,0XF3,0XF7,0XF7,0XF0,0XF8, 0X03,0XFB,0XFF,0XFF,0XFF,0X3F,0X1F,0X5F,0X5F,0X1F,0X3F,0XFF,0X1F,0X1F,0XDF,0X1F, 0XDF.0XDF.0XFF.0XFF.0XF7.0X03.0XBB.0XBB.0X03.0X47.0XFF.0X83.0X83.0XDB.0XDB.0X1B. 0XFF,0X3F,0X1F,0XDF,0XDF,0X03,0X03,0XFF,0X3F,0X1F,0X5F,0X5F,0X1F,0X3F,0XFF,0X3F, 0XF8,0XFF,0XFF,0XFF,0XFF,0XFC,0XF8,0XFB,0XFB,0XF9,0XFD,0XFF,0XF8,0XF8,0XFF,0XF8, 0XFF,0XFC,0XF8,0XFB,0XFB,0XF8,0XF8,0XFF,0XFC,0XF8,0XFB,0XFB,0XF9,0XFD,0XFF,0XEC, 0XE8,0XEB,0XEB,0XE0,0XF0,0XFF,0XFC,0XF8,0XFB,0XFB,0XFB,0XF9,0XFD,0XFF,0XFF,0XFF, 0XFF,0XFF,0XFF,0X03,0XFD,0X0E,0XF6,0XF6,0XF6,0XFE,0XFE,0XFE,0X06,0XDE,0XBE, 0X06.0XFE.0X0E.0X02.0XFE.0X0E.0XF6.0XF6.0XF6.0XFE.0X06.0XD6.0XD6.0XD6.0XD6.0XFE.0X06. 0X06,0XE6,0X1E,0XE6,0X06,0XFE,0XFE,0X06,0XD6,0XD6,0XD6,0XFE,0XFE,0X46,0XD6,0XD6, 0XB6,0X26,0XFE,0X06,0XD6,0XD6,0XD6,0XF6,0XF6,0XF6,0XF6,0XF6,0XF6,0XFD,0X03,0XFF,0XFF, 0X03,0XFD,0XF6,0XF6,0X66,0XF6,0XF6,0XFE,0X06,0XD6,0XD6,0XD6,0XFE,0X06,0XE6,0X1E, 0XE6,0X06,0XFE,0XB6,0X06,0XB6,0X86,0XFE,0XFE,0X66,0XD6,0XD6,0XB6,0X26,0XFE,0X06, 0XF7,0XF7,0XFB,0XFC,0XFF,0XFF,0XFC,0XFB,0XF7,0XF7,0XF6,0XF7,0XF7,0XF7,0XF6,0XF7, 0XF6,0XF6,0XF7,0XF6,0XF6,0XF6,0XF6,0XF7,0XF7,0XF7,0XF7,0XF7,0XFB,0XFC,0XFF,0XFF, }:

Issued Date:2018-03-19 **Doc. No.:**QP-001-027/B0

Issued Date:2018-03-19 **Doc. No.:**QP-001-027/B0

9. Optical Characteristics at 25°C

Table 8

Itaa	Value			I.L.: 1			
Item	Symbol	Min.	Тур.	Max.	Unit	Condition	
Image refresh time	-	-	1.8	-	S	VDD= $3.0V$, VLCD = $24V$, $@25^{\perp}$	
Contrast ratio	CR	-	6	-	-	-	
Ontinun	θ1(6 o'clock)	-	80	-		$\phi = 0^{\circ}$	17
Optimum viewing area	$\theta 2(12 \text{ o'clock})$	-	80	-	DEG	$\Psi = 0$	Vop= Optimum
$Cr \ge 2$	<pre> \$\$\\$\\$</pre>	-	80	-	DLG	+ 00	voltage
	φ2(9 o'clock)	-	80	-		$\phi = 0^{\circ}$	C

9.1 Optical Characteristics Definition

9.1.1 Viewing Angle

Figure 5

9.1.2 Contrast Ratio

B1 = pixel luminance at stable dark state

B2 = pixel luminance at stable bright state

Contrast Ratio = B2/B1

10. QUALITY SPECIFICATIONS 10-1. LCM Appearance and Electric inspection Condition 1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination. 45 Upper Polarizer Metal (Platic) Frame LCD Glass Conductive Rubber Bottom Polarizer PCB Backlight Foot (Frame) Coating Epoxy 2. View Angle: with in 45° around perpendicular line. **10-2. Definition** 1. COB 0 0 PCB 0 Metal (Plastic) Frame 0 LCD 0 0 \bigcirc 2. Heat Seal LCD Heat Seal 3. TAB and COG LCD Glass LCD Glass IC ITO Terminal Pin Pad IC COG ΓAΒ

10-3. Sampling Plan and Acceptance

1.Sampling Plan

MIL - STD - 105E (||) ordinary single inspection is used.

2. Acceptance

Major defect:	AQL = 0.65%
Minor defect:	AQL = 1.5%

7-4. Criteria

<u>1.COB</u>

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2. SMT

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing , extra, wrong component or wrong orientation		Reject
Minor	Component position shift x component soldering pad x y	X < 3/4Z Y > 1/3D	Reject Reject
Minor	Component tilt component D soldering pad	Y > 1/3D	Reject
Minor	Insufficient solder component PAD PCB	<i>θ</i> <u><</u> 20°	Reject

3. Metal (Plastic) Frame

Defect	Inspection Item	Inspection Standards					
Major	Crack / breakage	Any	Reject				
		W	L	Acceptable of Scratch			
		w<0.1mm	w<0.1mm Any				
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2			
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1			
		w <u>></u> 0.3mm	Any	0			
		Note : 1. Above criteria applicable to scratch lines with distance greater than 5mm. 2. Scratch on the back side of frame (not visible) can be ignored.					
			~	Acceptable of Dents / Pricks			
		⊕ ≤	2				
	Frame Dent , Prick	1.0<	1				
Minor	$\Phi = \frac{L + W}{2}$	1.5	0				
	2	Note : 1. Above criteria applicable to any two c / pricks with distance greater than 5mm 2. Dent / prick on the back side of frame visible) can be ignored					
Minor	Frame Deformation	Excee	d the dimension of	drawing			
Minor	Metal Frame Oxidation		Any rust				

4. Flexible Film Connector (FFC)

Defect	Inspection Item	Inspection Standa	rds
Minor	Tilted soldering	Within the angle +5°	Acceptable
Minor	Uneven solder joint /bump		Reject
		Expose the conductive line	Reject
Minor	Hole $\Phi = \frac{L + W}{2}$	Φ > 1.0mm	Reject
Minor	Minor $Y \xrightarrow{-\psi} $	Y > 1/3D	Reject
MINO		X > 1/2Z	Reject

5.Screw

Defect	Inspection Item	Inspection Standards	
Major	Screw missing/loosen		Reject
Minor	Screw oxidation	Any rust	Reject
Minor	Screw deformation	Difficult to accept screw driver	Reject

6. Heatseal 、 TCP 、 FPC

Defect	Inspection Item	Inspection Standards	
Major	Scratch expose conductive layer		Reject
Minor	HS Hole $\Phi = \frac{L + W}{2}$	Φ > 0.5mm	Reject
Major	Adhesion strength	Less than the specification	Reject
Minor	Position shift	Y > 1/3D	Reject
	X > 1/2Z	Reject	
Major	Conductive line break		Reject

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards			
		Acceptable number of units			
		⊕ <u><</u> 0.10mm	Ignore		
		0.10<⊕ <u><</u> 0.15mm	2		
Minor LED dirty, prick	0.15<⊕ <u><</u> 0.2mm	1			
		⊕>0.2mm	0		
	The distance between any two spots should be \geq Any spot/dot/void outside of viewing area is acce				
Minor	Protective film tilt	Not fully cover LCD F			
Major	COG coating	Not fully cover ITO circuit Re			

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

9. Inspection Specification of LCD

Defect	Insp	ect Item				•	n St	andards	5	
		* Glass Scratch	W			0.03	0.0	03 <w<u><0.0</w<u>	5 V	V>0.05
		* Polarizer Scratch	L		L	<5	+	L<3		Any
Minor	Linear Defect	* Fiber and Linear	ACC. NO.			1		1		Reject
		material	Note	L is t	he le	ength and	Wis	V is the width of the defect		
		* Foreign material		Φ <u><</u>		0.1<⊅ <u><</u>	0.15 (5 0.15<Φ <u><</u> 0.2		Φ>0.2
		between glass and		3E/ 100n	A /	2		1		0
Minor	Black Spot and Polarizer	polarizer or glass and glass	NO.	1001						
	Pricked	* Polarizer hole or	Nata	Φ is the average diameter of the defect.						
		protuberance by	Note	Dista	nce	between	two de	efects > 1	0mm.	
	external force									
		* Unobvious	-		Φ <u><</u>	0.3	0.3<	<Φ <u><</u> 0.5	0.	5 <Φ
	\\//=:t-=_Ore_=t	transparant foreign material between		3E/	A / 1(00mm ²		1		0
Minor	White Spot and Bubble in	glass and glass or	NO.							
polarizer	glass and polarizer		Φie	tha a	waraga d	iomot	mater of the defect			
	peralizer	* Air protuberance				-		neter of the defect. defects > 10mm.		
		between polarizer and glass								
			Φ	Φ <u><</u> 0	.10	0.10< ⊉	<u><</u> 0.20	0.20 <⊕	<u><</u> 0.25	Φ>0.2
	Minor Segment		ACC. NO.	3E/ 100m		2		1		0
Minor		.W.		W is more than 1/2 segment width Reje						
	Defect		Note		$\Phi = \frac{L + W}{2}$ Distance between two defect is 10mm					
			Φ	Φ ≤ 0	.10	0.10 <⊉	<0.20	0.20 <Φ<	<0.25	Φ>0.2
			w	Glu		-			W-1/2 Seg	
Minor	Protuberant	₩ ````````````````````````````````````	~~	Git	16	W <u><</u> 0	.2	<u>₩<</u> 0.	2	Ignor
WIITIOT	Segment	Φ = (L + W) / 2	ACC. NO.	3E/ 100n	· •	2		1		0
			1. Seg	ment				I		
			E	3	B	3 <u><</u> 0.4mm 0.		0.4 <b<u><1.0mm B>1</b<u>		.0mm
	Accombly		B-	B-A B		3-A<1/2B		A<0.2	B-A	<0.25
Minor	Assembly Mis-alignment		Juc	Judge Acceptable		Acc	eptable	Acce	eptable	
			2. Dot	Matri	x					
			Defo	rmatic	on>2	0				Rejec
Minor	Stain on LCD Panel Surface		cloth	or a si	mila	r one. Ot	herwis	iped light se, judgec and "Whit	lacco	rding

Issued Date:2018-03-19 **Doc. No.:**QP-001-027/B0

11. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(2) Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Trichloro trifloro thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:

- Water

- Aromatics

(3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect

any unused input terminal to VDD or VSS, do not input any signals before power

is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.

- Ketone

- (4) Packaging
 - Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.

- To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high

- temperature/humidity.
- (5) Caution for operation
 - It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
 - Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
 - If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
 - A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
 - Usage under the relative condition of 40°C, 50%RH or less is reequired.

(6) Storage

In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, The following ways are recommended.

- Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)

(7) Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol.
- Which should be burned up later.
- (8) Other
 - After the product shipped, any product quality issues must be feedback within three months, otherwise, we will not be responsible for the subsequent or consequential events.